• HOME
  • 炭水化物 調整飼料

炭水化物 調整飼料

炭水化物調整飼料 配合例・原料例

ご希望の炭水化物原料・含有量にて作製する事が可能です。

  • 高スクロース飼料(配合例 D11725 : 67kcal% ショ糖)
  • 高フルクトース飼料(配合例 D00111301Y : 61kcal% フルクトース)
  • 高グルコース飼料
  • 高コーンスターチ飼料
  • 高ラクトース飼料
  • 各飼料と組成を揃えたコントロール飼料

各種原料のご指定などオーダーメイドも可能です。
配合例の詳細についてはこちらまでお問合せください。

研究領域

栄養学・糖尿病・肥満・脂肪肝・その他あらゆるご研究分野にてご使用いただけます。

形状

固形・粉末・液体

使用上の注意

固形・粉末 どちらも常温保存可能 ※高温多湿は避けてください※
(粉末飼料の場合、成分の均一さを保つ為飼料交換の都度袋の底から全体を混ぜてください)
飼料交換回数について リサーチダイエット社ブログより

対応動物種

マウス ラット ハムスター・イヌ・サル・モルモット・マーモセット・ミニブタ など

参考論文・資料

関連論文については、お気軽にこちらよりお申し付けください。

D11725 (ローデント用 高ショ糖食) 使用論文 Google Scholar での検索結果

高スクロース飼料 使用論文

Updated: May 08, 2012

  1. Bizeau, M. E. et al. A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. American Journal of Endocrinal Metabolism. E695-E702, 2001.
  2. Bizeau, M. E. et al.Skeletal muscle sterol regulatory element binding protein-1c decreases with food deprivation and increases with feeding in rats. Journal of Nutrition. 133:1787-1792, 2003.
  3. Commerford, S.R. et al. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am J Physiol Regulatory Integrative Comp Physiol. 281:R1380-R1389, 2001.
  4. Commerford, S.R. et al. Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am. J. Physiol. Endocrinol Metab. E545-E555, 2002.
  5. Davidoff, A.J. et al. Sucrose-induced cardiomyocyte to dysfunction is both preventable and reversible with clinically relevant treatments. Am. J. Physiol. Endocrinol Metab. E718-E724, 2004.
  6. Dutta, Kaushik et. Al. Cardiomyocyte disfunction in sucrose-fed rats is associated with insulin resistance. Diabetes. 50:1186-1192, 2001.
  7. Haugen, B.R. et al. Retinoid X receptor ?-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology. 8:3679-3685, 2004.
  8. Kim, Jong-Yeon et al. Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Regulatory Integrative Comp. Physiol. 45:R665-R672, 1999.
  9. Pagliassotti, M. J. et al. Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. American Journal of Physiology. 40:R1319-R1326, 1996.
  10. Pagliassotti, M. J. et al. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am. J. Physiol. Regulatory. Integrative comp. Physiol. 278:R66-R73, 2000.
  11. Pagliassotti, M. J. et al. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. AM. J. Physiol. Endocrinol Metab. 282:E170-E176, 2002.
  12. Pagliassotti, M. J. et al. Glucose-6-phosphatase activity is not suppressed but the mRNA level is increased by a sucrose-enriched meal in rats. Journal of Nutrition. 133:32-37, 2003.
  13. Podolin, D.A. et al. Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats. Journal of Applied Physiology. 86:1374-1380, 1999.
  14. Schlaepfer, I.R. et al. Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. Journal of Lipid Research. 44:1174-1181, 2003.
  15. Wei, Yuren & Pagliassotti, M. J. Hepatospecific effects of fructose on c-jun NH 2 -terminal kinase: implications for hepatic insulin resistance. Am. J. Physiol> Endocrinol Metab. 287:E926-E933, 2004.
  16. Wei, Yuren, et al. An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats. Journal of Nutrition. 134:545-551, 2004.
  17. Wei, Yuren, et al. Fructose selectively modulates c-jun N-Terminal kinase activity and insulin signaling in rat primary hepatocytes.. Journal of Nutrition. 135:1642-1646, 2005.
  18. Pagliassotti, M et al. Tissue oxidative capacity, fuel stores and skeletal muscle fatty acid composition in obesity-prone and obesity-resistant rats. Obes. Res. 3:459-64, 1995.
  19. Gayles EC, Pagliassotti MJ, Prach PA. Koppenhafer TA, & Hill JO. Contribution of energy intake and tissue enzymatic profile to body weight gain in high-fat-fed rats. Am. J. Physiol. 272:R188-R194, 1997.
  20. Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, & Pagliossotti MJ. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R427-R433, 2001.
  21. Bizeau ME, Thresher JS, & Pagliossotti MJ. A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. Am. J. Physiol. Endocrinol. Metab. 280:E695-E702, 2001.
  22. Commerford SR, Pagliossotti MJ, Melby CL, Wei Y, Gayles EC, & Hill JO. Fat oxidation, lipolysis, and free fatty acid cycling in obesity-prone and obesity-resistant rats. Am. J. Physiol. Endocrinol. Metab. 279:E875-E885, 2000.
  23. Commerford SR, Pagliossotti MJ, Melby CL, Wei Y, & Hill JO. Inherent capacity for lipogenesis or dietary fat retention is not increased in obesity-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R1680-R1687, 2001.
  24. Horton TJ, Gayles EC, Prach PA. Koppenhafer TA, & Pagliassotti MJ. Female rats do not develop sucrose-induced insulin resistance. Am. J. Physiol. 272:R1571-R1576, 1997.
  25. Morin CL, Eckel RH, Marcel T, & Pagliassotti MJ. High fat diets elevate adipose tissue-derived tumor necrosis factor- alpha activity. Endocrinology 138:4665-4671, 1997.
  26. Morin CL, Gayles EC, Podolin DA, Wei Y, Xu M, & Pagliassotti MJ. Adipose tissue-derived tumor necrosis factor activity correlates with fat cell size but not insulin action in aging rats. Endocrinology 139:4998-5005, 1998.
  27. Pagliassotti MJ, Shahrokhi KA, & Hill JO. Skeletal muscle glucose metabolism in obesity-prone abd obesity-resistant rats. Am. J. Physiol. 264:R1224-R1228, 1993. 7. Horton TJ, Gayles EC, Prach PA. Koppenhafer TA, & Pagliassotti MJ. Female rats do not develop sucrose-induced insulin resistance. Am. J. Physiol. 272:R1571-R1576, 1997.
  28. Pagliassotti MJ, Knobel SM, Shahrokhi KA, & Hill JO. Time course of adaptation to a high-fat diet in obesity-resistant and obesity-prone rats. Am. J. Physiol. 267:R659-R664, 1994
  29. Pagliassotti MJ, Shahrokhi KA, & Moscarello M. Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: dose-response studies. Am. J. Physiol. 266:R1637-R1644, 1994.
  30. Pagliassotti MJ & Prach PA. Quantity of sucrose alters the tissue pattern and time course of insulin resistance in young rats. Am. J. Physiol. 269:R641-R646, 1995.
  31. Podolin DA, Gayles EC, Wei Y, Thresher JS, & Pagliassoti MJ. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43):R840-R848, 1998.
  32. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, & Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am. J. Physiol. Regulatory Comp. Physiol. 279:R1334-R1340, 2000.
  33. Commerford SR, Bizeau ME, McRae H, Jampolis A, Thresher JS, & Pagliossoti MJ. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281:R1380-R1389, 2001.
  34. Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, & Pagliassotti MJ. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281:R427-R433, 2001.
  35. Kim J-Y, Nolte LA, Hansen PA, Han D-H, Kawanaka K, & Holloszy JO. Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45):R665-R672, 1999.
  36. Podolin DA, Wei Y, & Pagliassotti MJ. Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats. J. Appl. Physiol. 86(4):1374-1380, 1999.
  37. Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, & Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278:R66-R73, 2000.
  38. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, & Bizeau ME. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 282:E170-E176, 2002.
  39. Weigle, D. S. and B. E. Levin. Defective dietary induction of uncoupling protein 3 in skeletal muscle of obesity-prone rats. Obes.Res. 8: 385-391, 2000.
  40. Pagliassotti MJ, Horton T J, Gayles EC, Koppenhafer TA, Rosenzweig TD, and. Hill JO. Reduced insulin suppression of glucose appearance is related to susceptibility to dietary obesity in rats. Am.J.Physiol 272: R1264-R1270, 1997.
  41. Pagliassotti MJ and Prach PA. Increased net hepatic glucose output from gluconeogenic precursors after high-sucrose diet feeding in male rats. Am.J.Physiol 272: R526-R531, 1997.
  42. Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, and Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am.J.Physiol Regul.Integr.Comp Physiol 278: R66-R73, 2000.
  43. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, and Bizeau ME. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am.J.Physiol Endocrinol.Metab 282: E170-E176, 2002.
  44. Podolin DA, Gayles EC, Wei Y, Thresher JS, and Pagliassotti MJ. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am.J.Physiol 274: R840-R848, 1998.
  45. Smith EE, Ferguson VL, Simske SJ, Gayles EC, and Pagliassotti MJ. Effects of high fat or high sucrose diets on rat femora mechanical and compositional properties. Biomed.Sci.Instrum. 36: 385-390, 2000.
  46. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, and Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am.J.Physiol Regul.Integr.Comp Physiol 279: R1334-R1340, 2000
  47. Fang CX, Dong F, Ren BH, Epstein PN, Ren J. Metallothionein alleviates cardiac contractile dysfunction induced by insulin resistance: role of Akt phosphorylation, PTB1B, PPARgamma and c-Jun. Diabetologia. 2005 Nov;48(11):2412-21. Epub 2005 Sep 20.
  48. Haugen BR, Jensen DR, Sharma V, Pulawa LK, Hays WR, Krezel W, Chambon P, Eckel RH. Retinoid X receptor gamma-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology. 2004 Aug;145(8):3679-85. Epub 2004 Apr 15.
  49. Huang W, Dedousis N, O'Doherty RM. Hepatic steatosis and plasma dyslipidemia induced by a high-sucrose diet are corrected by an acute leptin infusion. J Appl Physiol. 2007 Jun;102(6):2260-5. Epub 2007 Mar 15.
  50. Jackman MR, Steig A, Higgins JA, Johnson GC, Fleming-Elder BK, Bessesen DH, MacLean PS. Weight regain after sustained weight reduction is accompanied by suppressed oxidation of dietary fat and adipocyte hyperplasia. Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1117-29. Epub 2008 Feb 20.
  51. Kopilas MA, Dang LN, Anderson HD. Effect of dietary chromium on resistance artery function and nitric oxide signaling in the sucrose-fed spontaneously hypertensive rat. J Vasc Res. 2007;44(2):110-8. Epub 2007 Jan 10.
  52. MacLean PS, Higgins JA, Jackman MR, Johnson GC, Fleming-Elder BK, Wyatt HR, Melanson EL, Hill JO. Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol. 2006 Jun;290(6):R1577-88. Epub 2006 Feb 2.
  53. Wei Y, Wang D, Pagliassotti MJ. Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat primary hepatocytes. J Nutr. 2005 Jul;135(7):1642-6.

お問合せはこちらまで

▲ページトップへ