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A discussion of how diets made from purified ingredients influence
the phenotypes of the MS in commonly used rodent models.

A quick look at a crowd of people shows
that many of our fellow humans are car-
rying around too much excess weight.
The prevalence of obesity is at epidemic

levels in the developed world, and obesity may be
the root cause of or precursor to other diseases
such as insulin resistance, abnormal blood lipid
levels (hypertriglyceridemia and reduced high
density lipoprotein cholesterol), and hyperten-
sion (high blood pressure).  The term ‘metabolic
syndrome’ (MS) is used to describe the simulta-
neous occurrence of these diseases and people
with the MS are at increased risk for type 2 dia-
betes, cardiovascular disease, cancer, and non-
alcoholic fatty liver disease.  It is estimated that
individuals with the MS spend over $4000 per
year in treatment and to make matters worse, the
prevalence of the MS is growing at an alarming
rate, even in obese children.  

Like many diseases, the risk of developing the
MS will depend upon the interaction of one’s
genes and their environment.  Since the genetic
make-up, or genotype of the human population
has not changed over the past several decades, we
must look to the environment as the main cause
of the increase in metabolic disease during this
time frame. To be sure, decreased daily physical
exercise (and fewer calories expended) plays an
important causal role.  Research has shown that
increased exercise can ameliorate or even reverse
the progression of diseases that make up the MS.  

On the other side of the energy balance equa-
tion is the food that we eat.  From an evolutionary
point of view, it has been argued that obesity and
other ‘diseases of excess’ are in fact the natural
outcome of eating too many calories.  During the
evolutionary process, because the food supply

was not stable and periods of starvation were
common, it was advantageous to have genes that
allowed for the efficient storage of excess calories
as fat, given the uncertainty of when the next
meal would come.  In our present society, the
problem is that we still have those ‘thrifty genes’
but also have a variety of foods that are high in
saturated fat, simple sugars, and salt.
Unfortunately for us, many of these foods are
inexpensive and highly accessible (not to men-
tion very tasty), and we find them easy to con-
sume in excess, leading to disease and most like-
ly early death.  On the flip side of caloric intake
coin is the very interesting finding that long-term
restriction of calories prolongs the lifespan.1 This
concept that nutrients can change our biology or
phenotype, called nutriphenomics, is very impor-
tant and brings together many disciplines — physi-
ology, endocrinology, and molecular biology to
name a few — in the pursuit of how the nutrients
we eat can affect biological outcomes.  

The costs of treating the MS are clearly growing,
and it is no surprise that the research community is
seeking animal models that mimic the human phe-
notype so that potential therapies can be tested.
Because of the pivotal role that diet plays in causing
the MS in humans, most metabolic disease animal
models do (and we believe should) use diet as a way
to precipitate this syndrome.  Though this was not
the case decades ago, today, most diet-driven animal
disease models are generated using open source,
purified ingredient diets.  The open source nature of
purified ingredient diets allows researchers around
the world to compare data from different studies,
since the diet formulas are generally freely available
to the public (this is in contrast to chow diets, which
are generally ‘closed,’ meaning the formulas are gen-
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erally kept secret).  In addition, purified ingredient
diets have very little variability from batch to batch
(compared to chows), and so help to minimize data
variability.  Since the ingredients used are so highly
refined, purified diets lack the hundreds of plant-
derived phytochemicals that are found in grain-based
chow diets.   Some of these compounds, in particular
the phytoestrogens, are known to affect disease pro-
gression2 and so are usually unwanted variables.
Finally, purified ingredient diet formulas can be easi-
ly modified so that researchers can intentionally and
specifically change one ingredient at a time, allowing
them to study the effects of large or small changes in
the nutritional quantity and quality of the diet.
Because of these advantages (being able to report,
repeat, and revise the diets), most metabolic disease
animal research uses (and in fact requires) purified
ingredient diets.  For an expanded discussion of diets,
see our previous article in this publication.3 In this
brief review, we discuss how diets made from purified
ingredients influence the phenotypes of the MS in
commonly used rodent models. 

High-Fat Diets for Diet-Induced Obesity
Models
In order to gain a greater understanding of human
obesity, rats and mice are commonly used models as
they will readily gain weight when provided with a
high-fat diet and also develop other risk factors asso-
ciated with the MS.  

Numerous high-fat rodent diets are available from
commercial vendors.  Not all high-fat diets are the
same, since both the level and source of fat may dif-
fer between diets.  While most obesity research is
being conducted with purified ingredient diets,
some studies use a mixture of chow plus added fat.
This can lead to nutritional inadequacies, since as
more and more fat is added to a chow, the other
nutrients (protein, vitamins, minerals, and fiber) are
diluted.  The addition of too much fat can actually
render the final diet protein deficient, which is clear-
ly not the intention when feeding a high-fat diet.  

When choosing a purified ingredient diet with ele-
vated fat, the level of fat in the diet should be taken
into consideration.  While these terms do not have
strict definitions, low-fat diets (LFD) have about 10% of

Type of Diet  Strain Phenotype Comments References

Purified ingredient diet, 30-60 kcal% SD rat, Wistar rat Obesity BW differences between DR and DIO rats apparent 4, 15, 16
fat with various fat sources between 2-10 weeks on diet. Fat type can impact weight gain.

Chow with added fat to equal 48 kcal% fat ZDF rat Obesity and diabetes Males develop diabetes on standard chow, but . 18, 19
disease is more robust on higher fat diets. 
Females require diet with at least 48 kcal% fat to develop diabetes.

Purified ingredient diet, 45-60 kcal% fat  C57BL/6 mice Obesity/hyperglycemia BW differences between high fat and low fat diets 11, 21
with various fat sources groups appear as early as 1 week on diet. 

Hyperglycemia occurs around 4 weeks.

Purified ingredient diet, 10 or 58 kcal% A/J mice Obesity resistance Do not become obese despite caloric intake similar 21, 22
fat with various fat and CHO sources to C57BL/6 mice.

Purified ingredient diet, 10 or 58 kcal%  AKR mice Obesity and Become obese on high fat diets. They are more 11, 22
fat with various fat and CHO sources insulin resistance glucose tolerant but more insulin resistant, compared to C57BL/6 mice.  

Purified ingredient diet, 32 kcal% fat SD rat Hypertension Hypertension and obesity developed after 10 weeks on high fat diet. 66

Purified ingredient diet, 8% NaCl Dahl SS rat Hypertension Hypertension developed after 2-4 weeks on diet. 59-62

Purified ingredient diet, 60% fructose SD rat, Wistar rat Hypertension Hypertension developed after 6-8 weeks on diet. 67

Purified ingredient diet, 60 - 70 kcal% SD rat, Wistar rat IR/hypertriglyceridemia Both IR and hypertriglyceridemia after 2 weeks on diet. 47,48
Sucrose

Purified ingredient diet, 60 - 70 kcal% Golden Syrian Hamster IR/hypertriglyceridemia Both IR and hypertriglyceridemia after 2 weeks on diet. 54
Fructose

Purified ingredient diet, high saturated fat,  C57BL/6 mice Atherosclerosis/ Hypercholesterolemia and mild atherosclerosis after 26, 27
1% cholesterol, 0.25% cholic acid Hypercholesterolemia 14-18 weeks on diet.

Purified ingredient diet, LDL receptor KO, Atherosclerosis/ Hypercholesterolemia and atherosclerosis after 12 weeks on diet. 29-31
0.1 - 1.25% cholesterol apolipoprotein E KO Hypercholesterolemia

Purified ingredient diet, high in saturated Golden Syrian Hamster Atherosclerosis/ Hypercholesterolemia and atherosclerotic after 6 38, 40
fat, 0.05 - 1% cholesterol Hypercholesterolemia weeks on diet.

Purified ingredient diet, high saturated fat, Hartley Guinea Pigs Atherosclerosis/ Hypercholesterolemia and atherosclerosis after 12 43, 44
~0.3% cholesterol Hypercholesterolemia weeks on diet.

Brief Summary of Diet-Induced Metabolic Disease Models
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the calories coming from fat, high-fat diets (HFD)
have about 30-50% of the calories coming from fat,
and very high-fat diets (VHFD) generally contain
greater than 50 kcal% fat.  For comparison, most low-
fat chow diets contain 10-12% of the calories from fat.
To induce obesity, both HFD and VHFD are used, and
there is a dose-response for body weight as a func-
tion of dietary fat.4 When studying the influence of a
drug, nutraceutical, or gene mutation on obesity, one
must consider that it may be more difficult to reverse
the drive to obesity on a VHFD, whereas something
like compound efficacy may be more detectable
when used in conjunction with a HFD.   

The source of dietary fat is also important.  As one
researcher has said, “Oils ain’t oils,”5 meaning all
fats are not equal in terms of the phenotype they pro-
duce. For example, when rodents were fed purified
ingredient diets with similar amounts of fat, those fed
diets with fish oil did not gain as much weight and
were more insulin sensitive compared to those fed
saturated fats (SF).6-8 However, not all studies sup-
port this and it may depend on dietary fat level and
gender.6,9

Most rodents tend to become obese on HFD and
VHFD, but there can be variable responses in glucose
tolerance, insulin resistance (IR), triglycerides (TG), and
other parameters depending on the strain and gen-
der10,11 and source of dietary fat.6-8 Outbred Sprague-
Dawley and Wistar rats have a variable response to a
HFD (32 or 45 kcal% fat) such that some animals rap-
idly gain excess weight while others gain only as
much weight as they would on a LFD.  At first, this
research was done with chow-based diets12 but
purified ingredient diets were developed13 which
now researchers commonly use to separate the
rats into diet-induced obese (DIO) and diet-resist-
ant (DR) groups.14-16 Furthermore, the outbred
Sprague-Dawley DIO and DR rats have been selective-
ly bred over time such that their future body weight
response to a HFD is known in utero, allowing the
researcher to look early in life (prior to the onset of
obesity) for genetic traits  that may later predispose
them to their DIO or DR phenotypes.10,17 For
researchers interested in an obesity and type 2 dia-
betes rat model, the inbred obese Zucker diabetic
fatty (ZDF) rat is available.  The males become obese
and diabetic on a LFD, but HFD feeding promotes
more robust disease.  The female ZDF rat is unique
in that while they are obese, they do not develop dia-
betes unless fed a diet (in this case, chow-based)
containing 48 kcal% fat.18 The prolonged period of
insulin sensitivity prior to the onset of diet-induced
diabetes allows the researcher more time to study

female ZDF rat in a pre-diabetic state.19

Different strains of mice show variability in
weight gain on a purified ingredient VHFD (~60% by
energy).20 Some inbred strains such as the C57BL/6
or AKR mouse are quite susceptible to obesity on a
VHFD,11 while mice of the A/J and SWR/J strains
tend to be resistant to obesity.21,22 However, strains
that may exhibit similar levels of obesity may have
varied metabolic responses.  For example, C57BL/6
mice will become obese on a VHFD and are more
glucose intolerant while obese AKR mice become
more insulin resistant.11

Diets High in SF and Cholesterol for
Hypercholesterolemia and Atherosclerosis 
Humans with the MS are more prone to developing
atherosclerotic cardiovascular disease (ASCVD).  It
is believed that an increased intake of SF and cho-
lesterol, which raise the levels of circulating total
cholesterol (TC) and low density lipoproteins (LDL-
C),23,24 increases the risk of ASCVD.  As with
humans, a purified ingredient HFD (with much as
SF), and cholesterol (~0.2% by weight), commonly
referred to as a ‘Western diet,’ can elevate TC and
LDL-C and in turn cause atherosclerosis in certain
rodent models.  

Careful choice of the animal model is always cru-
cial for any experiment and a good example of this
is seen with the diet-induced development of ather-
osclerosis in rodents.  Normal mice and rats have
traditionally not been ideal models of cardiovascu-
lar disease research since they typically have very
low levels of TC and LDL-C but high levels of high
density lipoprotein cholesterol (HDL-C).  This is in
contrast to humans in whom the reverse is true.
The ability of rats and mice to maintain their cho-
lesterol profile (which is thought to be athero-pro-
tective) even in the face of high-cholesterol diets25

means that very little actual atherosclerosis devel-
ops.  In order to ‘force’ the atherosclerosis phenotype
on normal rats and mice, it is usually necessary to
combine  high concentrations of dietary cholesterol
with 0.25%-0.5% cholic acid (a bile acid which pro-
motes fat and cholesterol absorption from the intes-
tine).26, 27 Researchers should be aware that since
cholic acid can also promote liver inflammation,
decrease bile acid production, and alter circulating
TG and HDL-C, 26,28,29 it may independently affect
the development of atherosclerosis.

The ability to change the genetic make-up of
mice and produce ‘transgenic’ or ‘knockout’ mice
has allowed for the development of many interest-
ing and useful disease models. Genetically modified
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mice such as those with mutations that slow the
removal of LDL-C from the blood have led to more
‘human-like’ models which can show significant ele-
vations in circulating LDL-C.  These models in turn
can develop mature atherosclerotic lesions when fed
purified ingredient high cholesterol diets without the
need for dietary cholic acid.29 Some of these knock-
out mouse models (such as the LDL receptor knock-
out and the Apolipoprotein E knockout) can be very
responsive to elevations in dietary cholesterol (0.15%
- 1.25%) and can have significant elevations in both
plasma LDL-C and atherosclerotic lesions after being
fed for 12 weeks.29-32 Even in these susceptible
knockout mice, the source of fat can be used to fur-
ther modify the phenotype to the researcher’s advan-
tage.  For example, diets high in monounsaturated
fats (i.e. olive oil) promoted more atherosclerosis
than those high in SF (i.e. coconut oil) and polyun-
saturated fats (PF) (i.e. corn oil, safflower oil) in LDL
receptor knockout mice.33

Another model of atherosclerosis that has been
used frequently is the Golden Syrian hamster.  Like
rats and mice, these animals normally have high lev-
els of HDL-C, but in contrast, dietary cholesterol (~
0.1%) can significantly elevate LDL-C and like
humans, SF can increase these levels further.34,35

The combination of high dietary SF and cholesterol
is commonly used to promote atherosclerosis in
these animals36-38 and atherosclerotic lesions simi-
lar to those found in humans can be found after pro-
longed feeding periods.39 Actually, cholesterol itself
may not always be necessary for this phenotype,
since a purified diet with no cholesterol but high
concentrations of SF (as hydrogenated coconut oil)
can promote more aortic cholesterol accumulation
compared to a diet with both cocoa butter and 0.15%
cholesterol.40 This was despite the fact that both
groups had similar levels of LDL-C, suggesting that
the type of fat may play an important role in athero-
sclerosis formation in the hamster.

Guinea pigs are often used for lipid research,
since unlike rats, mice, and hamsters, they begin
with a cholesterol profile similar to humans (higher
in LDL and lower levels of HDL-C), and also possess
other human-like traits of cholesterol metabolism.41

As with hamsters, diets high in SF will elevate TC
and LDL-C levels relative to those fed high levels of
PF; the addition of cholesterol can promote further
elevations.42 Atherosclerotic lesions and aortic cho-
lesterol accumulation can develop when high levels
(~0.33%) of dietary cholesterol are fed.43,44

High Fructose/Sucrose Diets for
Hypertriglyceridemia and Insulin Resistance
in Rodents
Because it is so sweet and inexpensive, high fruc-
tose corn syrup (HFCS) is used in many processed
foods which humans eat and recent surveys in
humans have suggested that carbohydrate intake is
on the rise.  As we have learned over the past few
decades, an increased intake of refined carbohy-
drates, such as HFCS and the disaccharide sucrose
(which is composed of fructose + glucose), is asso-
ciated with increased weight gain, elevated circulat-
ing TG levels, and insulin resistance (IR) in humans
and animal models.45,46 In rodent models, purified
diets containing high fructose or sucrose elevate TG
and glucose production in the liver and this
increased availability of nutrients ultimately leads
to IR and hypertriglyceridemia.45,46 Typically, low-
fat chow diets contain about 4% sucrose and < 0.5%
free fructose.  Low-fat purified diets can contain
higher levels of sucrose and this will depend heavi-
ly on the formula being used. 

The Sprague-Dawley and Wistar rat are estab-
lished models of sucrose-induced IR and hyper-
triglyceridemia.47-49 Both of these phenotypes can
develop within two weeks when these animals are
fed a diet containing 65% sucrose (by weight) rela-
tive to one with 65% corn starch.47 It seems that the
fructose component of sucrose is largely responsi-
ble for the hypertriglyceridemia and IR produced by
high sucrose diets.50-52  Unless fed for a prolonged
period of time, these high fructose/sucrose diets do
not appear to lead to excessive weight gain.53

Similar to rats, hamsters fed high fructose diets
(~60% of energy) may develop IR and elevations in
TG after only two weeks compared to diets low in
fructose.54,55 Interestingly, hamsters fed high-
sucrose diets did not have elevated TG levels and
developed only mild IR relative to those fed diets
high in fructose.54 Since sucrose is one-half fruc-
tose, it appears that the level of dietary fructose is
quite important in the rapid development of IR and
elevated TG in hamsters.  

In contrast to rats and hamsters, the mouse is
used less frequently as a model for sucrose/fruc-
tose-induced IR and hypertriglyceridemia.  The
response to high fructose/sucrose diets is very
strain-dependent in the mouse56 and commonly
used  strains like the C57BL/6 mouse either do not
develop IR or develop IR slowly.56,57 However, the
mouse genome is easier to manipulate than that of
the rat and several knockout models (that are prone



to develop atherosclerosis) do show TG responses
to high dietary fructose.58

Diets High In Sodium (and Fructose) For
Hypertension
The causes of hypertension in humans are not fully
understood but are correlated with sodium chloride
(NaCl) intake, obesity, insulin resistance and of
course, genetics.  The rat is the historically pre-
ferred small animal model for diet-induced hyper-
tension, perhaps because of its size, the amount of
physiological data available, and robust blood pres-
sure response that some strains present.  

Both the level of dietary NaCl and the background
diet are important in generating a hypertensive phe-
notype in the rat.  Typical purified ingredient diets
contain about 0.1% Na, while chow diets contain
about 0.3-0.4% Na.  Both types of diets have been
modified to contain increased NaCl to study hyper-
tension.  The Dahl salt-sensitive rat shows a signifi-
cant rise in blood pressure within 2-4 weeks after
being fed a purified diet containing 8% NaCl.59-62

Lower levels of NaCl (4%) will still raise blood pres-
sure63 and this is reported to occur at a slower
rate.19 This rise in blood pressure can be attenuat-
ed by the addition of extra vitamin E to the diet.64

Similar to findings in humans, hypertension due to
an 8% NaCl diet can be prevented by supplementing
the diet with extra potassium,59 suggesting that
diets low in potassium may aid in the promotion of
hypertension.  Thus, diet can be used to both
induce and attenuate hypertension in the Dahl SS
rat.  

The diet to which the NaCl is added also affects
the level of hypertension and concurrent kidney
damage.  When 4% NaCl was added to both a chow
diet and a purified ingredient diet, Dahl SS rats fed
the purified diet had higher blood pressure and
more renal damage compared to chow-fed rats.65 Of
equal interest is the finding that offspring from par-
ents who were fed the 4% NaCl purified diet had
higher blood pressures regardless of the diet they
were fed after weaning, suggesting that the diet fed
to the mother during pregnancy can promote
hypertension in the offspring.  How does the back-
ground diet (chow vs. purified) affect the outcome
in this case? The reasons are not clear but may be
related to fundamental differences between chows
and purified diets in their protein sources, pres-
ence or absence of phytochemicals, level and type
of fiber, carbohydrate type, and/or the level of min-
erals such as potassium. 

Outbred rat strains such as the Sprague-Dawley

(which is in widespread use for obesity research)
can develop hypertension on high NaCl diets, and
this usually occurs over a longer time period (com-
pared to Dahl SS rats) or concurrent with the devel-
opment of obesity.66 Interestingly, diets with nor-
mal levels of NaCl but high in fructose (around 60%
of calories) will also increase blood pressure67,68

and produce signs of kidney damage in both
Sprague-Dawley and Wistar rats.67-69 Such high
fructose diets also cause IR69 (see section on high
fructose diets) and this may in fact have a role in
causing the hypertension.70

Even in a spontaneous rat model of hyperten-
sion, (such as the spontaneously hypertensive rat
[SHR] which will develop hypertension on a variety
of diets), diet can be used to modify the onset or
degree of this disease.  For example, dietary sup-
plementation with antioxidants (such as vitamins
E and C) can lower blood pressure in stroke-prone,
SHR.71

As mentioned earlier, the mouse is not as wide-
ly used for the study of diet-induced hypertension.
Inbred mice such as the C57BL/6 can develop ele-
vated blood pressure on purified diets high in NaCl
(8%), though the time frame for this appears to be
on the order of several months.72

It should be clear that in order to develop and
study an animal model of the MS, special diets are
needed.  Purified ingredient diets are ideally suited
to this task, since they can be intentionally modi-
fied to meet researcher’s needs, contain little to no
extraneous compounds, and have very little varia-
tion from batch to batch. Though it is well-known
to most researchers, it is worth stating that no phe-
notype is guaranteed and that careful choice of the
species/strain and adequate control over environ-
mental variables will be extremely important in gen-
erating and repeating data.  In this article, we have
briefly covered only some of the disease models
that can be induced by diet.  What should be clear
is that while some dietary factors promote one
specific phenotype (i.e. sodium induces hyperten-
sion), others may promote multiple phenotypes.
Examples include the use of high-fat diets to
induce obesity, IR, and hyperglycemia and using
high fructose diets to promote IR, hypertriglyc-
eridemia, and hypertension.  This simultaneous
development of disease should not be very sur-
prising given the complex interactions and causal
relationships between these diseases.  At present,
diet-driven animal models of the MS are still devel-
oping and there may not be one single model that
will satisfy all metabolic disease research needs.
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However, the demand for a diet-driven MS animal
model is relatively new.  Ongoing research using dif-
ferent species/strains along with existing and new
purified ingredient diet formulations should lead to
the development of more and more useful MS pheno-
types.
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